平成3年度アマゴバイテク技術応用試験

萩平 将・舩越 進・尾田 文治

染色体操作を中心とした新技術を導入することにより、アマゴの新しい育種技術の開発を目指し、将来的に性のコントロールや優良形質の固定を図ることを目的とする。

1 全雌魚作出試験

1) 方 法

前年と同様に平成元年度および平成2年度のホルモン処理により誘導された雄(以下「偽雄」という。)と通常雌親魚を用い、全雌魚の作出を試みた。供試卵は1回の試験に雌1尾から採卵したものを用いた。

2) 結 果

表1に示した。

前年と同様、全ての試験区において、通常受精並の高い発眼率およびふ化率が得られた。

表 1 全雌魚作出結果

雄の種類	受精卵数(粒)	発眼卵数(粒)	ふ化尾数(尾)	発眼率(%)	ふ化率(%)
通常雄	192	186	185	96.9	96.3
元年度誘導雄	200	195	192	97.5	96.0
2年度誘導雄	200	197	195	98.5	97.5
	218	217	215	99.5	98.6
元年度誘導雄	218	201	191	92.2	87.6
2年度誘導雄	217	210	207	96.8	95.4
	178	175	170	98.3	95.5
元年度誘導雄	828	819	800	98.9	96.6

2 雌性発生魚大量作出

1) 方 法

前年と同様に,精子の遺伝的不活化は Mounib Solution で 100 倍に希釈した精子に 3,600erg/mm2 の紫外線を照射し,染色体の倍数化は媒精 10 分後に 30 10 分の高温処理で行うこととした。なお,供試卵は1回の試験に雌3尾の卵を用いた。

2) 結 果

表2に示した。

正常魚ふ化率は前年度と同様,0.6~18.6%と低かったが,実用的には十分な偽雄が得られると考えられた。

表 2 雌性発生魚作出結果

試 験 区	受精卵数(粒)	発眼卵数(粒)	ふ化尾数(尾)	発眼率(%)	ふ化率(%)
2 Ncont	214	212	210	99.1	98.1
UVcont	129	108	0	83.7	0.0
G2NA	3,427	782	620	22.8	18.1
2Ncont	186	185	183	99.5	98.4
UVcont	142	137	0	96.5	0.0
G2NA	2,897	607	513	21.0	17.7
2Ncont	230	211	210	91.8	91.3
UVcont	205	148	0	72.2	0.0
G2NA	2,316	13	13	0.6	0.6

3 ホルモン剤による雄性化

前年と同様,ホルモン剤には 17- メチルテストステロンを用い,前記雌性発生魚大量作出で得られたふ化仔魚に,ふ化から浮上まで週 1 回 0.01ppm (2 時間 止水)の浸漬投与と,浮上後 60 日間 $1\mu g$ / g の経口投与をすることにより雄性化を図った。

4 異種精子を用いた雌性発生魚作出試験

1) 方 法

イワナの精子を用い,雌性発生魚の作出試験を行った。

精子はニジマス ASP またはアマゴ人工精漿で 100 倍に希釈し,精子の不活化および倍数化の処理条件は,アマゴ精子の場合と同じ条件で行った。

2) 結果

表3に示した。

精子の希釈液としてニジマス ASP を用いた試験区では発眼が見られなかったが,アマゴ人工精漿では発眼し,正常ふ化仔魚が得られた。作出率は 4.4%と低かったが,イワナ精子を用いた雌性発生魚の作出は可能であると考えられた。

表 3 イワナ精子を用いた雌性発生魚作出試験結果

試 験 区	受精卵数(粒)	発眼卵数(粒)	ふ化尾数(尾)	発眼率(%)	ふ化率(%)
ハイブリッドcont	117	84	30	71.8	25.6
ニジマスASP	248	0	0	0.0	0.0
アマゴ人工精漿	227	10	10	4.4	4.4

5 第1卵割阻止型雌性発生魚作出試験

形質の固定化を図るため,第1卵割阻止型雌性発生2倍体の作出を試みた。

1) 方 法

精子の遺伝的な不活化は前述の雌性発生魚大量作出と同様とした。

染色体倍数化の処理条件を,加圧処理は 650 気圧 6 分,高温処理は 30 5 分とし,受精後積算水温 70,80 および 90 ・h の 3 段階での処理の他,前年の結果から処理回数の増加が可能と考えられたため,70,80 および 90 ・h の 3 回の処理区を設定した。なお,供試卵は試験 1 回につき雌 1 尾の卵を用い,受精後は水温 15 で管理した。

2) 結 果

表 4,5 に示した。

染色体の倍数処理回数が 1 回の試験区では,正常ふ化率が $0 \sim 5.4\%$ と低かった。また,処理回数を増加した試験区からは,発眼がほとんど見られず,正常ふ化仔魚は得られなかった。

表 4 第 1 卵割阻止型雌性発生魚作出結果(加圧処理)

試 験 区	受精卵数(粒)	発眼卵数(粒)	ふ化尾数(尾)	発眼率(%)	ふ化率(%)
2Ncont	56	29	28	51.8	50.0
UVcont	76	46	0	60.5	0.0
70℃ •h	101	6	1	5.9	1.0
80℃ •h	105	3	1	2.9	1.0
90℃ •h	96	0	0	0.0	0.0
70, 80, 90℃·h	101	0	0	0.0	0.0
2Ncont	109	104	74	95.4	67.9
UVcont	117	94	0	80.3	0.0
70℃ •h	192	139	15	72.4	7.8
80℃ •h	177	0	0	0.0	0.0
90℃ •h	186	0	0	0.0	0.0
70, 80, 90℃·h	154	0	0	0.0	0.0

表 5 第 1 卵割阻止型雌性発生魚作出結果(高温処理)

試 験 区	受精卵数(粒)	発眼卵数(粒)	ふ化尾数(尾)	発眼率(%)	ふ化率(%)
2Ncont	81	75	73	92.6	90.1
UVcont	103	59	0	57.3	0.0
70℃ •h	202	0	0	0.0	0.0
80℃ •h	176	86	1	48.9	0.6
90℃ •h	186	79	10	42.4	5.4
70, 80,を90℃·h	206	0	0	0.0	0.0
2Ncont	56	43	43	76.8	76.8
UVcont	84	25	0	29.8	0.0
70℃ •h	167	58	0	34.7	0.0
80℃ •h	165	16	0	9.7	0.0
90℃ •h	173	66	0	38.2	0.0
70, 80, 90℃·h	163	4	0	2.5	0.0